905 research outputs found

    Overview of the JET results in support to ITER

    Get PDF
    The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H  =  1 at β N ~ 1.8 and n/n GW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed

    Risk mitigation for ITER by a prolonged and joint international

    Get PDF
    Prolonged operation of the Joint European Torus (JET) in a set-up involving all ITER partners will be beneficial for ITER. Experiments at JET with its ITER-like wall and using a D–T plasma mixture will help to mitigate risks in the ITER research plan. Training of the ITER operators, technicians and engineers at JET will safe valuable time when ITER comes into operation. Moreover, the way in which the future ITER experiments will be organized can already be experienced at JET, by imposing a similar organisational structure. This paper will present arguments in favour of an extension of JET and additionally briefly discuss a number of enhancements that will make experiments on JET even more relevant for ITER

    Overview of the JET results in support to ITER

    Get PDF
    The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.European Commission (EUROfusion 633053

    Risk Mitigation for ITER by a Prolonged and Joint International Operation of JET

    Get PDF
    Prolonged operation of the Joint European Torus (JET) in a set-up involving all ITER partners will be beneficial for ITER. Experiments at JET with its ITER-like wall and using a D–T plasma mixture will help to mitigate risks in the ITER research plan. Training of the ITER operators, technicians and engineers at JET will safe valuable time when ITER comes into operation. Moreover, the way in which the future ITER experiments will be organized can already be experienced at JET, by imposing a similar organisational structure. This paper will present arguments in favour of an extension of JET and additionally briefly discuss a number of enhancements that will make experiments on JET even more relevant for ITER.EURATOM 63305

    On the extrapolation to ITER of discharges in present tokamaks

    Get PDF
    An expression for the extrapolated fusion gain G = Pfusion /5 Pheat (Pfusion being the total fusion power and Pheat the total heating power) of ITER in terms of the confinement improvement factor (H) and the normalised beta (betaN) is derived in this paper. It is shown that an increase in normalised beta can be expected to have a negative or neutral influence on G depending on the chosen confinement scaling law. Figures of merit like H betaN / q95^2 should be used with care, since large values of this quantity do not guarantee high values of G, and might not be attainable with the heating power installed on ITER.Comment: 6 Pages, 3 figures, Submitted to Nuclear Fusion on the 29th of November 200

    Overview of the JET results in support to ITER

    Get PDF
    The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at beta(N) similar to 1.8 and n/n(GW) similar to 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.Peer reviewe

    Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    Full text link
    Self-consistent transport simulation of ITER scenarios is a very important tool for the exploration of the operational space and for scenario optimisation. It also provides an assessment of the compatibility of developed scenarios (which include fast transient events) with machine constraints, in particular with the poloidal field (PF) coil system, heating and current drive (H&CD), fuelling and particle and energy exhaust systems. This paper discusses results of predictive modelling of all reference ITER scenarios and variants using two suite of linked transport and equilibrium codes. The first suite consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H, D and He (including ITER scenarios with reduced current and toroidal field). The second suite of codes was used mainly for the modelling of hybrid and steady state ITER scenarios. It combines the 1.5D core transport code CRONOS [4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure
    • …
    corecore